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Implicit, high-order schemes are developed for time-accurate numerical solutions
of hyperbolic equation systems. High-order spatial accuracy for the implicit oper-
ators is obtained at no additional computing cost by performing compact differen-
tiation. The resulting alternating direction implicit and unfactored algorithms yield
improved dispersion characteristics compared to second-order accurate in space im-
plicit schemes which makes them suitable for high-resolution numerical simulations
in gas dynamics and computational aeroacoustics. First, a fourth-order accurate in
space implicit, factorized scheme, which requires block-tridiagonal matrix inversion,
is presented. Next, a class of implicit factorized schemes, which require scalar matrix
inversions, is presented. Higher order of accuracy in space of the implicit operators
is achieved at the expense of inverting scalar matrices with larger bandwidth. Finally,
extensions to unfactored algorithms, which use upwind compact schemes, are ob-
tained. The proposed high-order schemes can be implemented with little modification
of existing second-order accurate in space, implicit CFD methods. The efficiency, ac-
curacy, and convergence characteristics of the new, high-resolution implicit schemes
are demonstrated by their implementation for test problenas1999 Academic Press
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1. INTRODUCTION

High-resolution, time-accurate numerical solutions of hyperbolic equations are of in
est in many fields, such as direct numerical simulations (DNS) and large eddy simulat
(LES) in gas dynamics, computational aeroacoustics, and computational electromagn
In numerical solution of these problems, time integration is often performed with expl
methods, which are the schemes of choice when the time scales of interest are sma
comparable to spatial scales. In many applications, however, one deals with lower frequ
phenomena or simulations which must resolve a wide spectrum of spatial scales, cas
which explicit schemes lead to very large computing times. For these cases, one nee
develop high-order accurate, implicit methods where the time step is not severely lim
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by the cell size. The purpose of this paper is to present a new class of fully implicit, cc
pact, high-order accurate in space schemes for the numerical solution of multidimensi
nonlinear problems of gas dynamics and linear problems of computational aeroacou
and electromagnetics. For problems in gas dynamics we consider numerical solutions «
full, time-dependent Euler equations. Aeroacoustic problems require numerical solutic
the linearized Euler equations.

In recent years, there has been an increased interest in developing high-order,
accurate methods [30, 42, 15, 2, 40] for DNS and LES of high Reynolds number, turbul
compressible flows. These numerical simulations involve long integration times, a reqt
ment which makes preservation of phase characteristics important. It was pointed ol
Hu et al.[22] that even high-order accurate in time explicit methods applied to high-or
accurate space discretizations can cause dispersion errors. These errors and the nut
stability characteristics of the method may be improved with the optimized methods t
proposed [22]. The situation is worse when the order of accuracy is different in the sp.
and temporal discretizations. Apart from time integration, large dispersion errors are
caused by low-order space discretization or insufficient grid resolution in numerical sil
lations performed either with centered or upwind schemes. In many cases, therefore, L
methods with second-order accuracy in time and high-order accuracy in space [17]is ¢
sonable compromise because time marching with smaller time steps, needed for num
stability and/or prevention of dispersion errors, moderately increases the computing
but not the storage requirements. As a result, globally high-order accurate in space me
provide an attractive alternative to high grid resolution because it is preferable to perf
simulations with a smaller number of grid points and a larger number of time steps t
for memory management and computational efficiency. Direct simulations of wall-boun
flows in domains with stretched meshes [30, 40] use factorized, implicit schemes. In tl
computations, the convective terms were high-order accurate and the implicit oper:
were low-order accurate in space. Newton-type subiterations were used within each p
cal time step during the time-accurate computations to obtain time accuracy by removin
factorization errors and to reduce errors caused by the low order discretization in spa
the implicit operators. High-order accurate in space implicit schemes proposed in this p
can achieve the same level of accuracy with fewer subiterations, and since they intro
smaller dispersion errors are more suitable for long time integration.

Accurate, steady-state and unsteady CFD numerical simulations, on the other hanc
also be achieved with less computing effort when the space discretization is performed
a high order of accuracy. During the past decades many methods have been developed
can be used to evaluate the convective terms with a high order of accuracy. These me
use centered schemes [18] with added artificial dissipation [28] or spatial filtering [23, -
Shock capturing, high-resolution, TVD upwind methods with flux-vector splitting [34],
flux-difference splitting [31, 26] and high-order ENO schemes [35] are well-develop
Modern CFD codes perform implicit integration with unfactored relaxation schemes |
32, 41] or with alternating direction implicit (ADI) methods, such as the Beam—-Warmi
[4] algorithm. The Beam—Warming algorithm uses either central second-order accurate
ferentiation in space [4] or first-order accurate upwinding [13, 30]. The accuracy, efficiel
and convergence characteristics of implicit schemes can be improved by the applicati
high-order accurate in space discretization methods. Unfactored operators can be in
with relaxation methods[10, 41] or GMRES methods [32]. Itis straightforward to implems
high-order space discretization with GMRES methods. These methods, however, re
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very large memory resources and they are not practical for three-dimensional applicat
High-order spatial accuracy also increases the computing cost of ADI schemes and r
ation methods. The additional expense due to loss of computational efficiency makes u
higher order implicit discretization impractical for three-dimensional solutions. Theref
high-resolution schemes which provide high order of accuracy in space for both the
plicit and explicit operators, such as the fourth-order compact schemes recently prese
by Abarbanel and Kumar [1] and Yee [42] and the implicit high-order schemes develo
in this paper, can be used to achieve faster convergence and high resolution.
Recently there has been an increased interest in the development of methods su
for numerical simulations of unsteady phenomena related to wave propagation in a
ety of disciplines, such as aeroacoustics and electromagnetics. As a result, computa
aeroacoustics (CAA) [36] and computational electromagnetics (CEM) [33] have emel
as new, rapidly evolving fields in computational sciences. Both CAA and CEM requ
long integration times for far-field predictions. Recently, Carpenter and Kennedy [9] de
oped explicit, high-order, low-storage, Runge—Kutta methods for aeroacoustics and \
propagation. Het al.[22] developed optimized, explicit, Runge—Kutta schemes with be
ter dissipation and dispersion characteristics than the traditional, third- and fourth-o
Runge—Kutta methods. These optimized schemes chose the coefficients in order to ¢
the maximum possible order of accuracy in time for a given number of stages. Optimi:
explicit methods have increased stability limits but they are suitable only for aeroacot
problems where the grid spacing is much larger than the grid spacing typically used
solid walls in fluid dynamics viscous flow simulations. Numerical schemes with high or
of accuracy in space are also needed in order to enable solutions with a reasonable nurr
grid points per wavelength and small dispersion errors. Tam and Webb [37] presented
dispersion scheme for the numerical solution of the linearized Euler equations. Imprc
dispersion characteristics in wave propagation problems were also demonstrated by :
etal.[43] and Haras and Ta’Asan [20] who optimized high-order, centered, finite-differer
schemes. These schemes, which are analyzed in Refs. [37, 43, 16, 20], chose the coeff
of the differencing formulas so that the wave space resolution characteristics of the scl
are improved. Low dispersion and dissipation criteria necessary for aeroacoustic com,
tions are also fulfilled by the fourth-order accurate in space predictor corrector-type sch
of Ref. [17]. This scheme was developed by Gottlieb and Turkel [17], as an extensio
the MacCormack scheme known as the 2-4 MacCormack scheme, and it was used
for aeroacoustics applications. In this paper we develop implicit schemes which ach
high-order accuracy in space for the Euler equations of gas dynamics and the linea
Euler equations for aeroacoustics. Fourth-order accuracy in space is obtained at no
tional computing cost compared to the second-order accurate, ADI algorithm of Beam
Warming [4], because both methods require block tridiagonal matrix inversions. The |
posed high-order implicit schemes can be used for wave propagation, time advanceme
unsteady numerical simulations with large time steps, or faster convergence to a steady
The paper is organized as follows: Section 2 presents the Euler equations of gas dyn:
and the linearized Euler equations for sound propagation in the presence of a uniform
stream used in aeroacoustic simulations. Section 3 starts the preliminaries with the pr
tation of high-resolution space discretization and implicit time integration methods. Th
the new, fourth-order accurate in space, implicit, compact, block tridiagonal ADI algoritl
is presented. In Section 4 we present the compact schemes for the diagonalized AL
gorithm. Section 5 suggests extensions of the high-order, compact methods to unfac
algorithms. Section 6 presents a stability analysis of the ADI, implicit fourth-order, comp
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scheme. Implementation of the new schemes is discussed in Section 7. Section 8 is de
to illustrative examples where we compare analytical solutions with computed results
demonstrate the improved convergence characteristics of the new implicit schemes in
putations with stretched meshes for flows of practical interest. In Section 9, the conclu
remarks are presented.

2. GOVERNING EQUATIONS

For the schemes developed in this paper, it is sufficient to consider, without los:
generality, only the two-dimensional form of the governing equations for gas dynamics
aeroacoustics. The Euler equations of gas dynamics in strong conservation law forr
Cartesian coordinates are
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Here, p is the density;u, v are the Cartesian velocity components along xhand y
coordinate directions, respectivelyjs the total energy; ang is the pressure which, for
a calorically perfect gas, is related to the other variables through the equation of sta
p = (y — D[e — 0.5p(u? + v?)]. In curvilinear, body-fitted coordinate$, ) used for
problems with nontrivial geometries the Euler equations become
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whereQ = J[p, pu, pv, €7 is the solution vector) is the Jacobian of the coordinate
transformation, ané andG are the flux vectors in curvilinear coordinates. For exampl
F=J"&F+&0 =F=J3"pU, puU+&np, pvU +&p, (e+ pU —&p]T, where
U is the contravariant velocity compondiit= &,u + £yv + &.

Similarly, the two-dimensional, linearized Euler equations, which describe propaga
of acoustic disturbances in the presence of a uniform mean flow with Mach nivtpes
MZ + M7 are
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In these equationgy’, U, v’, p’ are the acoustic density, velocities, and pressure, resp
tively. My andMy, are the velocity components of the uniform mean flow alongthaady
coordinate directions, respectively. The linearized Euler equations in curvilinear coordin
are given in Appendix A.

The nonlinear Euler equations are integrated in time to obtain steady-state and uns
numerical solutions of compressible flows. For a steady-state solution it is desirabl
use large time steps for fast convergence. Time-dependent flow problems and aeroac
computations require time-accurate solutions, and itis desirable to use time steps detert
by the physics rather than the numerics. Therefore, in many cases use of explicit algorit
which have time step restrictions due to CFL stability, is impractical. For wave propagal
problems and long time integration, on the other hand, phase preservation and minimiz
of dispersion errors becomes important, and development of high-order implicit sche
which fulfill all these requirements is shown next.

3. HIGH-RESOLUTION SCHEMES

3.1. High-Resolution in Time and Space Discretizations

Numerical approximations to the convective terms of the nonlinear Euler equation
gas dynamics and their linearized form which describes sound propagation in the pres
of a uniform free stream give rise to dispersive errors. These errors occur [39] becau
the discrete approximation the phase velocity of propagation, of the harmonic compor
into which an arbitrary function is resolved by Fourier analysis, is not constant. For cer
difference schemes, the dispersive errors are contributed mostly by the odd order deriv
terms of the modified equation. For simple sinusoidal solutions of linear problems, |
the deviation of the numerical phase velocity of propagation from the exact value at
frequencies is in general minimized by using higher-order spatial approximations. I
therefore, natural to use fourth-order spatially accurate algorithms not only in orde
achieve better accuracy (measured by thercor norm) but also to obtain better dispersive
properties needed for long time integration in wave propagation and unsteady aerodyn
problems. For these problems, optimal resolution is obtained when high-order of accu
in time and space is used. However, few implicit algorithms [12] are higher than sec
order both in time and space.

Central-difference spatial discretization is nondiffusive and constitutes a natural ch
for the propagation of acoustic waves which are isotropic, and nondiffusive when govel
by the Euler equations. High-order accurate spatial discretization with a small stencil
can be achieved by central, compact schemes where the spatial derivatives are con
in a coupled fashion which implies solution of a tridiagonal or larger bandwidth systernr
linear equations. Various compact schemes were derived and analyzed by Lele [23]
example, the first order derivative’ of a function f is evaluated with the fourth-order
accurate compact scheme as

fj/fl+4fj/+ fl‘/+1:3(fi+1_ fjfl)- (6)
Evaluation of fourth-order accurate first derivatives with Eq. (6) requires scalar tridiagc

matrix inversion, which is obtained efficiently. Compact differentiation involves only
three-point stencil as does the explicit second-order accurate central differencing forn
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Computing a first derivative with sixth order of accuracy requires inversion of a tridiago
matrix but involves a five-point stencil as

’ ’ / 1
fj_1+3fj + fj+1 = 1_2[ f]+2+28( fj+1 - fjfl) - fj72]- (7)

Evaluation of the first derivative with an order of accuracy higher than six [23] impli
inversion matrices of bandwidth larger than three and requires the use of standard Ic
upper decomposition methods. Significant savings in computing time are obtained v
the inverses of these matrices are stored. Then the computing cost for the evaluation:
first derivative with compact schemes becomes comparable to the cost for the evalu
of the first derivatives with standard, explicit, high-order central difference forms, whi
due to their large stencils require more multiplications and additions for the same o
of accuracy. The compact schemes in addition to their high-resolution characteristic
wave space [23] provide also an advantage compared to their noncompact counterps
the implementation, because they require fewer spatial formulations near computat
boundaries. Compact schemes can be applied for the entire computational domain
the one-sided formulas for high-order compact schemes which were presented by Cary
et al.[8].

Compact central difference schemes for the evaluation of the space derivatives
used with both explicit Runge—Kutta time integration [23] and implicit factorized, iterati
algorithms [40] for time marching. For explicit methods, the spatial order of accure
used for the evaluation of the fluxes determines the resolution of the scheme [22, 37,
Commonly used explicit Runge—Kutta methods are third- or fourth-order accurate in ti
The low-storage, four-stage, fourth-order accurate Runge—Kutta (R-K-4) method is |
in many CFD codes [38] in combination with centered discretization in space. The thi
stage, two-time level storage, third-order accurate in time Runge—Kutta (R—K-3) met
[35], which is TVD in the sense that the temporal operator by itself does not increase
total variation of the solution, was also used with ENO and TVD schemes. Explicit ti
integration with the optimized Runge—Kutta methods of [22, 9] provide low-dispersi
characteristics and when Egs. (6) or (7) are used to compute the spatial derivatives c
residual term, global high-order spatial accuracy is obtained at least for periodic probl
where the overall accuracy level does not degrade by the application of the boun
conditions. Explicit methods, however, due to stability limitations, require large comput
times, and become impractical for numerical solution of time-dependent problems in
stretched meshes. Implicit algorithms presented in the next section can overcome
problems.

3.2. Implicit Algorithms

Implicit algorithms which provide higher order accuracy in time are the fourth-orc
method for time integration of wave problems proposed by de Froutos and Sanz-S
[12] and high-order implicit Runge—Kutta methods [7]. Each physical time step of the
Froutos and Sanz-Serna method [12] is a succession of three implicit midpoint rule
integration steps. For nonlinear equations, not directly solvable for the dependent varia
each intermediate step is carried out with a suitable subiteration process until a ce
convergence criterion is fulfilled. Linearization of the convective fluxes, on the other ha
cannot be used because it introduces a second-order error in time. Implicit Runge—}
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methods [7] also require large storage, and they are not straightforward to implemen
multidimensional, nonlinear problems.

Second-order accurate in time ADI algorithms, on the other hand, are suitable for ti
accurate solutions of nonlinear problems, such as the compressible flow equations, an
have been successfully used in LES and DNS [30, 40]. A common ADI method for
Euler equation is the Beam—Warming algorithm [4, 5]. This algorithm is obtained when
nonlinear inviscid fluxesF"*1, are linearized with a second-order accurate in time Tayl
series expansiof™! = F'+(3F/0Q)"(Q" 1 — QM+ O(A1)? = F"+A"AQ"+O(AL)?,
whereA is the flux Jacobian matrix fde". Using this second-order accurate in time fluy
linearization and adding the terat)?s; (AAQ) - §,(BAQ), whereB denotes the flux
Jacobian matrix foiG, the implicit operator can be approximately factored. The err
introduced by the approximate factorization is represented by the added factor term an
a norm(At A - (At ||B]]), which is proportional to the CFL numbers along thandn
directions and imposes a limitation on the time stdp

Factorization errors are reduced by the iterative form of the Beam—Warming algori
[4, 5],

1At 9ATP 1At 9B1P
[I ! } [| ! —} AQP =[I +hs:A; ;]°[l +hs,Bi ;]PAQP

1+ 6, 0& 146, 0n
At 02
p p p -1 p

In this equation, the superscribtefers to the number of internal subiterations which ma
be used during time advancement of the solution from time levelthe new time level
n+ 1 with physical time stept in order to eliminate linearization and factorization errors
and errors arising from employing a lower order space discretization of the implicit side.
p > 2 the residuals typically drop by an order of magnitude for each additional subiterat
In Eq. (8),h=0At, o =61/(1+62), AQ°=(QP* —QP)), and AQ" 1 =Q" - QL.
The first-order accurate in time, Euler implicit scheme is obtained #ith 1, 6, =0.
Second-order accuracy in time yields the trapezoidal rule with 1/2, 6, =0, and the
three-point backward, implicit time discretization is obtained with- 1, 6, = 1/2. Time-
accurate computations require second-order accuracy in time and use the trapezoid:
or the three-point backward scheme. Steady-state calculations can be performed wit
first-order accurate in time Euler implicit method or with the diagonal form of the algoritt
developed by Pulliam and Chaussee [29].

Pulliam and Chaussee [29] diagonalized the block matrices in Eq. (8) and obtained s
diagonal operators for thieandn sweeps. The diagonalized algorithm solves the equatio
in a decoupled fashion by independent scalar tridiagonal inversions, which were foun
be three to four times faster than the block tridiagonal algorithm inversions. Unfortunat
however, the diagonalized algorithm is only first-order accurate in time. Second-order ti
accuracy can be obtained if the diagonalized algorithm is combined with a dual time
subiteration scheme [6]. These schemes with internal subiterations were proposed for
accurate solutions of incompressible flows with the artificial compressibility method
Merkle and Athavale [24] for explicit inner subiterations. Time-accurate solutions of
compressible flow equations were also obtained in Ref. [38] where a “pseudo” time vari
was introduced for the internal subiteration which was performed with an explicit sche
and multigrid acceleration techniques.
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The left-hand side differentiations of the Beam—Warming algorithm of Eq. (8) or
diagonal form are evaluated using second-order accurate central differences with a
second-order implicit smoothing [28], or first-order accurate upwinding of the flux-sy
[34] Jacobians as in Refs. [13, 30]. For both cases, along each line, only three-point ste
are involved and the block tridiagonal structure of the implicit operator matrices is retair
The tridiagonal structure of the matrices yields a significant advantage in computing sj
because inversion is performed efficiently. Recently, time-accurate, high-resolution ¢
putations were performed [40] where the right-hand side derivatives were computed L
high-order, compact schemes given by Egs. (6) and (7), while the implicit operators v
second-order accurate in space. Internal subiterations within each physical time step
used to drive the residuals to zero. In the next paragraph it will be shown how to ob
fourth-order accuracy for the implicit operators, which helps to reduce the number of in
nal subiterations and improve the dispersion characteristics of time integration. The b
tridiagonal structure of the implicit operators is retained by using compact differentiat
formulas for the evaluation of the first-order derivatives.

A single sweep of Eq. (8), along tedirection, for example, involves solution of a linear
equation system written in operator form as

[I +hé:A; j1(AQ")P = R", ©)
where(AQ*)P = [l + hé,Bi ;]AQP. This system in expanded form is
[(AQ")PLi; +h[AAQHPT | = R}, (10)

where []" denotes a first derivative which in the Beam—-Warming algorithm is typica
computed using second-order accurate central differences\ a6AR™)P; ; = 5[A -
(AQ*)P] = 0.5([A - (AQ")Plisej — [A - (AQHPli_y ).

In order to achieve high-order, compact differentiation for the implicit operators, we fi
write two additional relations for the grid poinits— 1 andi + 1, similar to the one given
for the grid pointi by (10). Multiplying Eqg. (10) by 4, adding the relations fo# 1 and
i — 1, and using Eg. (6) to evaluate the first derivatives by a fourth-order accurate com
scheme we make the substitution

[AAQYPLi_yj +4[AAQHP] ; + [AAQNP] 4y |
= 3([AAQH 41— [AAQ")P]i—1j). (11)
This formula evaluates the derivatives with a fourth-order accurate, three-point, com
stencil. Therefore, wheR" in Eq. (11) is computed with fourth-order spatial accurac)
then an algorithm with fourth-order formal accuracy in space is obtained. This algorit

retains the block tridiagonal matrix structure for the implicit operators because it uses ¢
three-point stencils. Each time step involves two sweeps alonigahé j directions as

(I = 3hAi_1))(AQHP 1 | +4AQ"P, + (I + 3hAiL1)(AQHP, |
=Rl +4R) + Ry =R;
(I = 3nB; j_)(AQ)P|_; + 4AQ)F; + (I + 3hB; ;) (AQ)P 4
= (AQ)] |1 +4AQ); +(AQMP 1. (12)
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This algorithm is the most second-order accurate in time and in many cases requires
tional subiteration indicated by the superschb remove factorization errors.

The fourth-order accurate algorithm requires only a few more multiplications and
ditions compared to the original ADI algorithm given by Eg. (8) where the left-hand si
operators are second-order accurate in space. Therefore, substantial savings in con
time can be obtained because it is not necessary to perform a large number of subiter:
for high-order accurate solutions. Numerical experiments have shown that for time-acct
solutions, factorization and linearization errors are removed with only one additional su
eration. Extension of the algorithm in (12) to the compressible Navier—Stokes equat
is possible [5]. Viscous terms in the implicit operators in the direction normal to the w
in both algorithms (8) and (12) can be included by using the thin-layer approximat
[3] which retains derivatives of the viscous terms only in the normal to wall direction.
the derivation of Eq. (12), the standard, compact, fourth-order accurate central differe
formula was used for the differentiations. This formula maximizes the formal order of
curacy but is sub-optimal from the point of view of minimizing dispersion errors. Comp:
schemes developed in [23, 44] which optimize the dispersion characteristics of the oper
can also be used. High-order, implicit, upwind schemes can be obtained by using up
high-order compact space differentiation [11, 44] with flux-vector splitting [34] instead
first-order upwinding for the ADI algorithms of [30, 13]. A similar, ADI algorithm can be
applied to the solution of the linearized Euler equations. This form of the algorithm is gi\
in Appendix A. Compact differentiation which yielded the fourth-order accurate in spe
algorithm of Eqg. (12) can be used in order to obtain order of accuracy higher than four.
computing cost of a sixth-order accurate compact scheme, however, increases signific
because the five-point stencils of Eq. (7) yield block pentadiagonal matrices. Global o
of accuracy higher than four can be obtained at a smaller additional computing cost v
the diagonal form of the Beam—Warming algorithm is used as it is shown next.

4. DIAGONALIZED COMPACT ALGORITHM

The standard diagonalized Beam—Warming algorithmis only first-order accurate in ti
and for second-order accuracy in space requires tridiagonal matrix inversions. Using
dard fourth-order accurate central differencing formulas in the diagonalized left-hand -
operators increases the bandwidth of the scalar matrices to pentadiagonal. Scalar pent
onal matrices can be inverted quite efficiently, and the computational cost of the fourth-o
accurate diagonalized algorithm is still reasonable. For higher order of accuracy, how:
the computing cost increases rapidly. Compact high-order accurate in space implicit
ators are constructed as follows.

Fourth-Order Diagonalized Algorithm
Application of fourth-order compact differentiation as in Eq. (11), and substitution of t
one-dimensional diagonalized operators yields
(I = 3n[Aedi—1)DAQHM 1 +4AQYY, + (I + 3h[Agliv D(AQMy |
=R +4R + Ry =Ry
(I = 3n[A]ij-D(AQ)] _y + AAQ)Y + (I + 3n[A,i.j+1)(AQ)Y 4
= (AQ!_; + 4AQM! | + (AQY! s (13)
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The scalar tridiagonal structure of the implicit operators is retained and fourth-order a
racy in space is obtained. Second-order accuracy in time can be obtained when using
time step inner subiteration as in Ref. [6].

Sixth-Order Diagonalized Algorithm

Using the sixth-order accurate compact differencing formula (7) to evaluate the der
tives of the left-hand side we obtain the following formula which evaluates the ol
dimensional operator derivatives as

L((AQ") 1 +3(AQ"); + (AQM) 1 j + h[Aeli 1 ;(AQM)
+3n[Aeli ;(AQM!; +h[Agli 11 (AQ") 4 |
=R';; +3R", + R} ; =Rs. (14)

Making the substitution for the derivatives using a sixth-order accurate, five-point ste
(Af_1 +3A] + A{ [y = [Aij2 + 28(Ai41 + Aj—1) — Ai_2)]/12) we obtain the following
implicit operator for the sweep alonglirection,

h 7h
—<12[As]i2,j>(AQ*)inz,j + <| - S[As]il,j)(AQ*)inl,j +31(AQ")]
7h *\N h sk\ N n
" (I - §[As]i+1vi>(AQ Jivej t (1_2[A§]i+2'j>(AQ Jivzj = Re (15)

In this equation, the bandwidth of the scalar matrices was increased to pentadiagonal
termRg denotes the explicit right-hand-side term which for consistency must be compt
using the sixth-order accurate compact finite-differences given by Eqg. (7).

The high-order in space implicit time integration schemes discussed in this sectior
summarized in Tables | and Il. The operation count, referring to the total number of
ditions, multiplications, and divisions to form the implicit operators for a single point,
indicated. The operation count can be considered as a measure of the computing ¢
the scheme.The accuracy and efficiency of each method can only be assessed by the
implementation. Under lllustrative Examples we demonstrate the efficiency and accu
of the high-order accurate in space compact implicit schemes by comparing the error c
computed solutions with the error obtained with other methods. In the last column of
table the inversion method is indicated. For comparison, the original block tridiagonal a
rithm and the diagonalized algorithm are also included. Scalar matrix inversion of (13) i
to 30% faster than the block tridiagonal inversions of (12), but the diagonalized algoritt

TABLE |
Operation Count of Block Tridiagonal Algorithms

Implicit algorithm Accuracy Accuracy Operation Inversion

type and/or name Ref. No. Eqg. No. in time in space count method
Beam-Warming, BW [4] (8) 2nd 2nd 746 Block 3diag.
Abarbanel-Kumar, AC [1] — 2nd 4th 818 Block 3diag.

Compact, BW-C4 Present (12) 2nd 4th 858 Block 3diag
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TABLE Il
Operation Count of Diagonalized Scalar Tridiagonal Algorithms

Implicit algorithm Accuracy Accuracy Operation Inversion
type and/or name Ref. No. Eq. No. intime in space count method
Pulliam—-Chaussee, PC [28] — 1st 2nd 384 Scalar 3diac
Compact, PC-C4 Present (13) 1st 4th 456 Scalar 3diac
Compact, PC-C6 Present (15) 1st 6th 488 Scalar 5diac

are first-order accurate in time and typically run at smaller time steps. The sixth-order o
onalized algorithm requires approximately 25% more computing effort because it invol
pentadiagonal matrix inversion.

5. UNFACTORED COMPACT ALGORITHM

Beneficial properties of modern upwind schemes, such as diagonal dominance [10]
urally arising at least in first-order spatially accurate upwind schemes, make possible
construction of unfactored algorithms leading to rapid convergence to a time asymp
steady state [32]. Unfactored implicit algorithms can also be constructed for time-acctL
solutions of gas dynamic and aeroacoustic problems. The algorithms were used for effi
time-accurate computations of truly time-dependent solutions [14, 32]. In their nonlin
form, unfactored algorithms correspond to a Newton method which shows quadratic «
vergence even for very large time steps, but can only be implemented in two-dimensi
problems due to memory limitations. Therefore, numerous authors [10, 32, 41] have 1
relaxation methods for the solution of the unfactored form avoiding factorization errors

Unfactored implicit algorithms are obtained after linearization of the convective flux
around an intermediate stapeas shown by the following Newton-type iterative method,

[l +h(:Ai +6,Bi)D]IAQP = —[QP — Q" + AtR"], (16)

whereAQP = QP! — QP

The flux Jacobian matrices in (16) are splitas- A* + A~ and the difference operators,
8, are substituted by forward/backward operators for the evaluations of the derivat
associated withA—, AT, respectively. A similar process used for the derivation of th
factorized algorithms, cf. (12), (13), and (15), is applied, equations analogous to (16;
i—1,i+1andj—1, j+1arewritten, and the derivatives are evaluated using the comp:
upwind, third-order accurate formulas of Refs. [11, 44]. Then the left-hand-side opera
are third-order accurate in space, and time-accurate solutions can be obtained usir
following point relaxation scheme,

[I +[DIP;]AQP = —w[QP — Q" + AtR"] + D", (17)

where P] denotes a matrix with diagonal element®] is the complementary matrix
with the off-diagonal elements resulting from space discretizationgsisdhe relaxation
parameter. The plus/minus Jacobian matrices of the flux veétérare obtained either
exactly or approximately and the discretized form given by Eq. (17) is solved with a pc
Gauss—Seidel iteration.
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6. STABILITY ANALYSIS

We consider the linearized, i.e., constant coefficient, version of the algorithm whicl
applied, for example, to the numerical solution of the linear wave equation

U + Uy + Uy =0. (18)

The Von Newmann stability analysis of the fourth-order algorithm given by Eq. (12) is c
ried outin Fourier space. The Fourier component of the solution vegtgat time stem is

Ulr,]m — Dnei[I(LAx)]ei[m(MAx)]’ —c0o<L <00, —00<M <00
=oneldleglml gz <p<n, —m<0<m. (19)
For simplicity assume that standard fourth-order central-differencing is used to eval

the residual ternR; )4 = —At[Uyx 4+ Uy]; j; then the right-hand side of Eq. (12) become
R} = (Ri_1j)a+ 4(Ri j)a + (Rit+1j)a. The discretized ternR}); j in expanded form is

At
R = 1plUi-ai —Aizj = 3Wi1j +3Wii1j + AUz — Uisa )

+ (Ui jo3 —4Ui j» — 31Uj j_1 + 31U; j41 4+ 4Uj j12 — Ui j13)].  (20)
We define the amplification factor matrix ZsasU™* = ZU". With these definitions

and simplifications the constant coefficient version of the algorithm for implicit integrati
of Eq. (18) is mapped into the Fourier space as

[(1—3n0e™™ + 4+ (1+3h0€e?][(1 - 3hye™ + 4+ (1+3hy)E’](Z - 1)
= —%[(9*3“” —4e72¢ — 3167 4 316 + ¥ — &%)

+ (e ¥ — 4729 _ 3171 4 316 + 2 — esie)]. (21)
Furthermore, without loss of generality, we can consider the special case whetreAy
or hy = hy = h = o At for which Eq. (21) becomes

[2 cosg + 4 + i6h sing][2 cos® + 4 + i6hsing](Z — 1)

At . . . . .
= —<12> (2)[—sin3p +4sin2p 4+ 31sing —sinP +4sind + 31sind]. (22)
Solving this equation for the amplification factor we obtain
LR + i(O’L| — AtRR)
LR + io |_|

wherelL g, L, andRg represent the Fourier maps of the left-hand-side and right-hand-s
operators, respectively. These terms are given by

7=

: (23)

Lr = 4o[(cosg + 2)(cost + 2) + (3h)? sing sind]
L, = 12[sin¢g (cosf + 2) + sinf(cos¢ + 2)] (24)
Rr = [31(sing + sind) + 4(sin 2p + sin ) — (sin 3p — sin 3)]/6.

Equation (23) shows thal — 1 — i(Rg/3602sing sind At) for very large time step.
Therefore, whemt — oo, the amplification factor magnitude |gZ| <1, and both the
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second- and the first-order accurate in time, fourth-order accurate in space implicit
rithms are unconditionally stable. The same analysis can show that the two-dimensi
algorithm is unconditionally stable for all values of the cell aspect ratio.

7. IMPLEMENTATION

Numerical solutions of nonlinear problems require damping of high frequency mo
which when not resolved by the mesh are aliased and appear as low frequency m
This is accomplished by either using humerical dissipation or by applying spatial filter
to the solution vector. For compact space differentiation, the compact filtering sche
suggested in Refs. [23, 16] can be used. Implicit seven-point filter formulas were sugge
in Ref. [23] where a sixth-order pentadiagonal and a fourth-order tridiagonal spatial fi
were implemented and the filter coefficieatswere derived with Taylor series and Fourier
analysis. Tridiagonal eight- and ten-order implicit filters were used in [40]. Filtering
applied sequentially one direction at atime on the conserved variables after each subitel
for implicit time integration or after the final stage of the Runge—Kutta scheme for expli
time integration. At the computational domain boundaries, instead of using one-sided, f
order formulas we can reduce the filter order and still obtain improved, low dissipat
spectral characteristics, as suggested in [40].

The fourth-order accurate in space algorithm of (12) can be applied in the domain betv
i =2toi =Imax—1andj =2 to j =Jmax— 1, because the derivatives in the right-hand
side termR, ; are evaluated using a three-point compact stencil. For explicit update of
boundaries of the computational domain the residuals are sett@are: Ri jmax=R1,j =
Rimaxj = 0) in Egs. (12), (13), or (15). Application of the sixth-order algorithm of (15) re
quires, in addition, dropping the accuracy at the point next to the boundary. The resi
at the boundary points may be also computed with the one-sided operators suggest
Carpenteret al. [8]. Nondissipative algorithms, which are used for direct simulation «
turbulent flows and in computational aeroacoustics, have very low dispersion errors
require incorporation of accurate, nonreflective boundary conditions to avoid numet
instabilities and dampen spurious wave reflections at the computational boundaries
Some computations in the next section are performed by assuming periodicity at the «
putational boundaries. In these cases, the computational domain is folded on itself ar
boundary conditions are actually required. In other cases, however, solid wall and radic
boundary conditions are prescribed. These conditions are briefly described where us
the next section.

8. ILLUSTRATIVE EXAMPLES

8.1. Linearized Euler Equations

The performance of the proposed implicit, high-resolution compact schemes is te
first for the linear problem of a pulse reflecting from a solid wall. The governing equatic
are the linearized Euler equations given by (4), and (A1) in Appendix A. The fourth-or
compact scheme given by Eq. (A2) is used for implicit time integration. The computat
starts with zero velocity field and pressure field given by

2 RVAY
pX,y) = eXp{—In 2 {’(Jr(yyo)}}

Wo
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which represents a Gaussian shape pulse of widtttentered ax = 0 andy = y,. This
pulse spreads symmetrically in the absence of a freestream and reflects from the solid
On the solid wall surface the nonpenetration condition is imposed on the normal to
wall contravariant velocity componelit = nyu + nyv = 0 oraV /ot = nuy + nyvy =0
which yields the following relation for the normal derivative of pressure at the wall:

_ Gxnx + fyny)
! nZ+n?

The wall pressure is obtained by discretizipg using one-sided, high-order accurate
formulas.

The Cartesian velocity components at the wall are obtainedag,U /J,v = —n,U /J
whereJ = ny& — nx&y. Atthe far field the radiation boundary condition of Tam and Web
[37] was imposed. Simulations were performed with both uniform grid spatixg- 1
and with numerical meshes stretched in the normal direction in order to provide hic
grid resolution in the near wall region. The computed solutions with uniform and stretc!
meshes were practically identical. The computed results can be compared with the
solution given in [19]. The acoustic pressure field, for example, is given by the closed-fi
solution,

1 [
px,y, ) = 2% /0 e cotE[ Jo(Ex0) + Jo(EX)] dé,

wherea = In2/wo, X1 = [X? 4 (Y — Yo)?]Y2, X2 = [X? + (Y + Yo)?] Y2, andJ, is the zeroth-
order Bessel function of the first kind.

First, a solution is computed for a pulse located far from the solid wai} at 100. The
computation is carried out unfll = 50, so that the the spreading pulse wavefront is st
far from the wall and the reflected acoustic field is very weak. For this model problem,
effects of the boundaries are insignificant and the errors in the computed solution are ce
mainly from the interior numerical scheme and not from boundary treatment. Compt
results are compared with the exact solution in Fig. 1. The comparison of Fig. 1a shows
atT = 25 the solution computed with the second-order accurate in space implicit sch
of Eq. (8), without subiterations, with fourth-order accurate spatial derivative evaluatior
the right-hand-side terms using Eq. (6), deviates from the exact solution. Results comg
with the same grid spacing and second-order accurate in space right-hand side (not s
here) are in poor agreement with the exact solution. The error of computed solutior
plotted in Fig. 1b. Table | shows that the solution obtained with the fourth-order accu
in space implicit scheme of Eq. (12) requires 15% more computing time, compared tc
solution obtained with second order accuracy by using the algorithm of Eq. (8). Figure
however, shows that for this increase of computing time we obtain a reduction of the €
by an order of magnitude.

Next, a computation was carried out using Eq. (12), up t8 100 nondimensional time
units for a pulse located at, = 25. Figure 2 shows comparisons of the computed resu
with the exact solution along the line normalxe= 0 for different times. Figures 2a and
2b show comparisons before the pressure front reaches the wall. Figures 2c and 2d
comparisons during reflection, and Figs. 2e and 2f show the incident and reflected pL
Note that in Fig. 2f the scale for the acoustic pressure has been changed. Each pt
resolved with 15 points. All comparisons show very good agreement of the computa
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FIG.1. Comparison of computed results with the exact solution and error for the computed pressurkat T
T =25, and T=50; spreading of the puls@;(x, y) = exp{—In 2[(x? + (y — 100)?)/25]}.

with the exact solution. No phase errors are observed for long integration times perfor
with large time steps.

8.2. Full Euler Equations

8.2.1. Convection of a density disturbanc&olutions of the full nonlinear Euler
equations are presented next. First, numerical solutions for simple convection
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FIG. 2. Comparison of the computed acoustic pressure along the normak 8twith the exact solution
at times (a) =7.5, (b) T=10, (c) T=20, (d) T=25, (e) T=50, and (f) T=100; reflection of the pulse,
p'(X, y) = exp(—In2[(x? + (y — 25)?)/25]}, from the solid wall aty =0.

Gaussian-type density disturbance of peak amplifaide 0.1p., by a uniform subsonic

free streanM = 0.2 are obtained using implicit and explicit time integration methods. Th
density disturbance in the absence of diffusion must convect without change in shape
amplitude. The same time step was used for time integration with all implicit schemes
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FIG. 2—Continued

the pulse was convected 50 nondimensional lengths. The explicit solution was comp
with one-tenth of the time step. The numerical solutions were obtained without adc
any form of numerical dissipation or explicit filtering and without subiterations. The sal
grid spacingAx = 1 was used. The solution obtained with the present fourth-order impli
schemes of Eq. (12), the fourth-order compact scheme of Abarbanel and Kumar [1], an
fourth-order Runge—Kutta (R—K-4) method where the space discretization is performed:
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a fourth-order accurate formula of (6), shown in Fig. 3, are practically identical. The pt
shape obtained from time integration with the fourth-order accurate in space diagonal
compact scheme of Eq. (13) shows phase errors because it is more dispersive sinc
only first-order accurate in time. The solution obtained with the standard, second-o
accurate in space implicit Beam—Warming algorithm of Eq. (8), where the right-hand-¢
term was computed with fourth-order accurate finite differences, shows differences f
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FIG.3. Comparison of the computed density amplitude with the exact solution for the convection of a der
disturbance: (C-1) 4th order, block tridiagonal, compact implicit; (C-2) 4th order, Abarbanel-Kumar; (C-3)
order, diagonal, compact, implicit; (C-4) explicit R—K-4, 4th order accurate, compact right-hand side (RHS); (¢
Beam-Warming 2nd order in space implicit, 4th order accurate RHS.

the exact solution and development of larger dispersion errors. The maximunm-@&or
is obtained for the second order accurate in space and time implicit algorithm (C-5).
fourth order accurate diagonalized algorithm (C-3) shows a maximum erre2%f, and
the other schemes have very little error.

8.2.2. Vorticity convection. Convection and preservation of vorticity is important fou
DNS/LES simulations and the key element for many CFD applications. Vortex-gener:
sound is also of importance to many aeroacoustic applications. The ability of numel
methods to obtain acoustic fields generated by vortices was the subject of recent numi
investigations [25]. In helicopter rotor aerodynamics currently available direct wake cap
ing methods, which are usually second-order accurate in space, demand a very large nt
of grid points in order to prevent numerical diffusion of the wake vorticity. Therefore t
ability of the proposed high-order implicit algorithms to accurately convect vorticity wi
less diffusion is demonstrated next. A model problem of vortex convection is conside
where initial vortical flow conditions are imposedtat 0 by prescribing velocities and
pressure using the following relations as in Refs. [27, 40],

_ C(y - yC) e_r2/2

u=Ug R§
CX—Xo) _
V=V — Tce r2/2
2
P = P Qe*rz/z

- Jre
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for aninviscid vortex of strengt@ and vortex core radiuB. centered ax., y.. The relation
for pressure was obtained by integrating the radial momentum eqagion= pu3/r about
the vortex center, whereis the radial distance given by= /[(x — xc)? + (Y — Yo)?]/R2.
Accuracy tests for the convection of this inviscid vortex by a uniform stréame 0.2 are
performed and solutions of the Euler equations are obtained using the explicit third-o
Runge—Kutta method, the second-order accurate in space implicit method [4] of Eq.
and the new compact schemes. Implicit integration was performed without subiterati
Numerical solutions are obtained with a uniform grid spaciwg= Ay for a vortex of
strengthC = 0.05 andR. = 10. The computations were initialized with a density obtaine
by using an isentropic flow assumption. First, the ability of the explicit method in predicti
the correct vortex strength after the vortex has been convegtied= 50 nondimensional
length units is demonstrated. The three-stage Runge—Kutta method (R—K-3) is use
time advancement, and space discretization is performed with standard fourth-orde
curate central-difference formulas and added sixth-order artificial dissipation. Soluti
obtained with grid spacing oAx = Ay=0.5, 1.0, and 20 are compared with the exact
solution in Fig. 4.

The solution obtained with a grid density afx = 2.0 shows phase errors. The result:
obtained with the highest grid density yielded a quality required in LES simulations wt
the solution obtained wittlAx =1 provides an accuracy level sufficient for most CFL
solutions. The quality of numerical solutions, which use the Beam—-Warming algorit
for time integration and different levels of grid refinement, and their ability to predict t
correct vortex strength, is shown in Fig. 5. For reference, the centerline vorticity obtai
from the numerical solution with the explicit (R—K-3) method and grid spading= 2.0

0.08 ‘
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0.06 - = == Ax=1.0 H
B —_——— - Ax=2.0
i \
3 0.04 \
= - p
S i
B |
> 0.02
i /
B ; 9
oF 4 0\ ’
B Y i

-0'0220 30 40 50 60 70 80
Axial Location
FIG. 4. Advection of vorticity with different grid densities. Explicit time integration with the third-ordei

accurate in time Runge—Kutta (R—K-3) method. Comparison of the computed vorticity along the centerline
the exact solution.
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FIG.5. Advection of vorticity with different grid densities. Implicit integration with the second-order accura
in space and time Beam-Warming algorithm; (C1) 4th-order accurate right-hand side (RHS); (C2) 2nd-c
accurate RHS; (C3) 4th-order accurate RHS. Comparison of the computed vorticity along the centerline wit
exact solution.

is shown in the same figure. Increasing the grid density (curve C1) and higher orde
accuracy in space yields a better solution quality. The numerical solution obtained witf
second-order of accuracy in space for both the right-hand side and the implicit integre
has very large dispersion errors. The solution obtained with fourth-order accurate ce
differences for the convective fluxes has larger phase errors than the explicit time solt
which used compact space differentiation.

The solution obtained with the fourth-order accurate implicit compact scheme of Eq.
is compared in Fig. 6 with the numerical solutions obtained using the second-order accl
in space implicit Beam—Warming algorithm where the derivatives on the right-hand side
computed using fourth-order accuracy in space. The solution computed with the pre:
fourth-order accurate in space block tridiagonal scheme, as shown in Table I, has a sli
higher computing cost. It shows, however, good agreement with the exact solution ant
phase errors are small even though half the number of points along each direction was
The maximum error in amplitude of the solution computed with the algorithm of Eq. (12)
Ax =1 is approximately 4% while the solutions computed with the second-order accu
in space implicit scheme have large dispersion and maximum amplitude errors 15%
6% for Ax =1 andAx = 0.5, respectively.

Finally, results computed with the present scheme are compared in Fig. 7 with the re
obtained from a solution using the Abarbanel and Kumar [1] fourth-order compact sche
Both schemes yield almost identical levels of accuracy for grid spasing Ay = 2. For
reference a solution computed with a Runge—Kutta method and fourth-order accurat:
plicit central difference evaluation of the convective derivatives is shown in the same fig
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FIG. 6. Comparison of the vorticity along the centerline computed with the Beam—Warming algorithm ¢
the present compact scheme.
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FIG. 7. Comparison of the vorticity along the centerline computed with= 2 and using the Abarbanel and
Kumar compact scheme and the present compact scheme.



294 JOHN A. EKATERINARIS

The implicit solutions were obtained with a time step 20 times larger than the expl
solution. As a result the total computation cost of the implicit solution was lower. The |
merical solutions for the convection of the vortex required filtering. Solutions obtained w
second-order accurate in space implicit methods used the standard fourth-order diffel
operators [29] for explicit smoothing and second-order difference operators for impl
smoothing. The solutions obtained with compact schemes and the explicit (R—K-3) me
used compact implicit filtering described in Section 7. The maximum error of the solut
computed with the fourth-order accurate compact schermés% for Ax =1 and~12%
for Ax = 2. For the same grid spacingx = 2 the same level of accuracy was achieved wit
the compact scheme of Abarbanel and Kumar [1].

8.2.3. Airfoil flows. The fourth-order block tridiagonal algorithm of Eq. (12) and the
diagonalized scheme of Eq. (13) are used for numerical solutions with stretched me
required in computations of flows of practical interest. In these computations, the con
gence characteristics of the proposed schemes are demonstrated. Solutions are compt
viscous and inviscid subsonic flow at Mach numbgg, = 0.3 over a NACA-0012 airfoil at
an angle of incidence = 10 deg. Inviscid solutions were computed with a C-type 2011
point grid. High-order accurate compact finite differences of (6) and (7) were used to ev
ate the right-hand-side terms. The computed surface pressure distribution (not shown
for all cases was in agreement with the measurements. The convergence rates were ok
by the second-order accurate in space algorithms, and the high-order compact scher
Egs. (12), (13), and (15) are shown in Figs. 8 and 9. The convergence histories of the se
and fourth-order accurate block-tridiagonal algorithms shown in Fig. 8 were obtained f

———e—— 4th Order Eq. (12)
2nd Order Eq. (8)

108§ — — — - 2nd Order Eq. (8), N=2
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FIG.8. Convergence of the block tridiagonal fourth-order accurate in space algorithm and the original sec
order accurate algorithm with subiteratiord £ 2 andN = 3), shown by the kL norm of density residuals for
inviscid flow over an airfoil;M = 0.3 andwe = 10°.
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FIG.9. Convergence of the second- and fourth-order accurate in space diagonalized algorithms shown |
L, norm of density residuals for inviscid flow over an airfdil; = 0.3 ando = 10°.
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FIG. 10. Convergence of the second- and fourth-order accurate in space block tridiagonal algorithms, sl
by the L, norm of density residuals for viscous flow over an airfdl;= 0.3, « = 10°, andRe =5 x 10°.
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nondimensional time stefit =0.01. For comparison, steady-state computations obtain
by the second-order algorithm using additional subiterations are shown in the same fi
Computations of the same flow with the first-order accurate in time diagonalized algoritl
were carried out with size of the time ste&g = 0.005. Convergence rates of the fourth-
and sixth-order accurate algorithms are compared with the convergence of the stan
second-order accurate in space algorithm in Fig. 9. For all cases, the high-order con
schemes yielded a better convergence rate than their second-order accurate counte
For viscous flow solutions, only the block tridiagonal second- and fourth-order accul
algorithms are used because the viscous Jacobians do not simultaneously diagonaliz
the inviscid flux Jacobians. The viscous solution was obtained on & 331point grid at

a =10 deg, for a Reynolds number base on the cited="5 x 10°, and the turbulent flow

was simulated with an algebraic eddy viscosity model [3]. Figure 10 shows that a be
convergence is obtained for the fourth-order accurate computations for viscous flow.

9. CONCLUDING REMARKS

Compact, high-order accurate in space, implicit integration schemes were develo
These schemes use the same methodology implemented for the development of seconc
accurate in space ADI algorithms and unfactored relaxation methods, which are curre
used inmany CFD codes for steady-state and time-accurate computations. The time acc
of the new algorithms is still at most second-order because of the linearization in time wi
is applied to the nonlinear fluxes. High-order accuracy is obtained by evaluating the sp
derivatives of the implicit operators by compact differencing schemes at no increas
the computing cost. Global high resolution is obtained when the right-hand side exp
part of the numerical scheme is computed with a high-order accurate method. The
algorithms have similar stability characteristics and faster convergence rates compar
their second-order accurate in space counterparts. The proposed schemes were tes
linear aeroacoustic problems and the computed results were in agreement with the
solution. Numerical solutions of the two-dimensional Euler equations were also obtai
and the results of vortex convection by uniform stream have shown that significant sav
in computing time and improved accuracy can be obtained from the application of
proposed implicit integration schemes.

APPENDIX A

The linearized, compressible Euler equations in generalized curvilinear coordinates
—+—+==0, (A1)

where the Qrimitive varigble vectdy becomes) = %[p/ u' v p]7, and the transformed
flux vectorsf’ andg aref’ = 5[&f'+£,g1, § = 3[nxf' + nyg], where the Cartesian flux
vectorsf’ andg’ are given in (4). The flux Jacobian matdx = af'/0§’ of the linearized
Euler equations is independent @fand depends on the spatial coordinates through t
transformation metrics. Similarly to Eq. (12) the second-order accurate in time fourth-ol
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accurate in space implicit scheme for the linearized Euler equations is

Si

(I =3hAi_1 DAGH 1| +4AF)F; + (= B Ai ATy
=Rl +4R) + Ry
(I = 3hB - )(AG) 1 +4A); + (I = 3hB'i ;1) (AT)] 14
= (MG +4HAGHP + (AG)) 11 (A2)

milar to Eq. (12) the right-hand side of (A2) also implies use of pairt® andi + 2 for

the termsR"_, ; and R, ;; therefore, the algorithm applies from= 3 toi = Imax— 2.

+

The differentiations ofA andB in (A2) are included to account for the metric variation.

The first-order accurate in time diagonalized algorithm is not appropriate for aeroac

tics solutions. Use of a dual time stepping [6], which yields second-order accuracy in t
can make the diagonalized algorithm suitable for time-accurate numerical simulatior
aeroacoustics. Furthermore, implementation of upwind compact differences for the e
ation of the time derivative can yield third-order accurate in time dual time step metho
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